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Abstract

A general form of the kinetic coe�cients of the Fokker±Planck equation describing gas bubble nucleation in su-

persaturated solution of vacancies, interstitials and gas atoms is obtained. No assumptions concerning the detailed

balance are used to describe the absorption and desorption of point defects and gas atoms at the bubble surface. This

allows us to investigate limits of the usual formalisms of the gas bubble nucleation in irradiated materials. The `hard

sphere' equation of state is applied to describe the gas in the bubble. High densities of the gas atoms collected in the

nucleated bubbles considerably decrease the critical bubble size and its nucleation barrier. The nucleation rate of the gas

bubbles is obtained and its temperature dependence is investigated in detail. It is shown that an increase of the gas atom

concentration results in decrease of the temperature of the nucleation rate maximum. Ó 1999 Elsevier Science B.V. All

rights reserved.

PACS: 61.80.Az; 05.40.+j; 05.70.Fh

1. Introduction

Radiation swelling and high temperature radiation

embrittlement of structural materials result from for-

mation and evolution of the vacancy void and gas

bubble ensemble. Decay of three component supersat-

urated solid solution of vacancies, interstitials and gas

atoms formed in the material by irradiation results in

appearance of small gas±vacancy clusters. Transforma-

tion of these clusters to gas bubbles increasing irrevers-

ible their volume results from the cluster size

¯uctuations and is similar to the ®rst order phase tran-

sition. Initial stage of this evolution (nucleation of gas

bubbles) de®nes the void density at the developed stages

and in¯uences the kinetics of radiation swelling.

The nucleation kinetics of the gas bubbles are in-

vestigated using the rate equation and nucleation theory

formalisms [1±5]. Because probabilities of absorption

and evaporation of point defects and gas atoms from the

bubble determine the kinetics of the gas bubble forma-

tion the obtained results depend crucially on model as-

sumptions used to describe the probabilities. The best

way is an investigation of the microscopic kinetics of

point defects and gas atoms at the bubble surface, but

usually semiphenomenological models are used to ob-

tain these probabilities. For example, to calculate these

probabilities the authors of Refs. [2,3] used the distri-

bution function f0 of the bubbles maintaining the de-

tailed balance in the bubble size space (i.e. resulted from

zero bubble current in any point of this space). How-

ever, in multi-component systems only speci®c forms of

the absorption and evaporation probabilities result in

the detailed balance [6,7]. In the case of the gas bubble

nucleation the detailed balance may be achieved due

only to additional assumptions concerning the micro-

scopic kinetics of point defects and gas atoms at the

bobble surface kinetics. It was shown in Ref. [8] that

even for two component nucleation in supersaturated

solution of vacancies and gas atoms the forms of the

absorption and desorption probabilities used in Refs.

[2,3] cannot result in the detailed balance in the gas

bubble ensemble. The problem becomes much more
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complicated when interstitials are also introduced into

the nucleation kinetics [2,3].

In the present paper we use no assumptions con-

cerning the detailed balance to describe the absorption

and desorption of point defects and gas atoms at the

bubble surface. This allows us to investigate the in¯u-

ence of parameters of the material and irradiation on the

limits of the usually used formalisms of the gas bubble

nucleation. It should be noted that when the di�usion

mobility of the dissolved gas is low (helium) the multi-

component problem of the helium bubble formation can

be successfully reduced to the one component one [9] but

in this paper we especially investigate multi-component

systems to describe the gas bubble formation in the

general case.

The `hard spheres' equation of state [10] is used to

describe the gas in the bubble. It is shown that high

densities of gas atoms which is realized in the nucle-

ated bubbles considerably decrease the critical bubble

size and its nucleation barrier. The nucleation rate of

the gas bubbles is obtained and its temperature de-

pendence is investigated in detail. It is shown that an

increase of the gas atom concentration results in de-

crease of the temperature of the maximum of the nu-

cleation rate.

2. Governing equations

We shall characterize a small spherical gas bubbles by

numbers of the gas atoms (x) and vacancies (n) which

form the bubble volume

V � xgx� xn: �1�
Here xg is an increase of the bubble volume due to

absorption of a gas atom dissolved in the matrix and x
is the atomic volume.

To describe the nucleation kinetics we introduce the

distribution function f �x; n� so that f �x; n; t�dxdn rep-

resents the volume density of the bubbles having di-

mensions x±x� dx and n±n� dn at time t. When the

bubble growth results from absorption and desorption

of single vacancies, interstitials and gas atoms at the

bubble surface, an evolution of the distribution function

is described by the Fokker±Planck equation [7]:

of
ot
� ÿ oJx

ox
ÿ oJn

on
; �2�

Jz � Azf ÿ o
oxz
�Bzf �: �3�

Here z � x; n. In Eq. (3) the kinetic coe�cients Az and Bz

are, respectively, the `hydrodynamic' rate and `di�usion'

coe�cient of the bubbles in the dimensions space. These

coe�cients depend on the probabilities of absorption

(Pa� and desorption (Qa� of a-type defects at the bubble

surface per unit time (a � x; v; i, where v and i denote

vacancy and interstitial, respectively):

Ax � Px ÿ Qx; Bx � �Px � Qx�=2; �4�

An � Av
n ÿ Ai

n � �Pv ÿ Qv� ÿ �Pi ÿ Qi�; �5�

Bn � Bv
n � Bi

n � �Pv � Qv�=2� �Pi � Qi�=2: �6�
Eqs. (2) and (3) should be supplied by initial and

boundary conditions which will be formulated below.

3. Kinetic coe�cients

3.1. Probabilities of absorption and desorption

The probability of desorption Qa depends on the

equilibrium concentration of a-type defects in the layer

of thickness l at the bubble surface and on the height of

the barrier for their di�usion jump into the matrix [8]

(see Fig. 1):

Qa�R; x; n� � 4pR2ln

xk2
a

Da exp�ÿea=T �Ceq;a�R; x; n�: �7�

Here, temperature T is measured in the energy units;

Da � m1k2
a exp�ÿUam=T � is the di�usion coe�cient of a-

defects [11]; ma is the attempt frequency for an a-defect

(below we assume ma � m, where m is the frequency of

atomic oscillations in the matrix); Uam is the free enth-

alpy barrier for the di�usion of a-defects in the matrix;

ka is the di�usion jump length of an a-defect in the

Fig. 1. The Gibbs free enthalpy of the system containing the gas

bubble of size �x; n� and an a-type defect via positions of this

defect from the bubble surface. �dF � �oFb=oxa� � �oFs=oxa��:
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matrix; ea is an additional di�usion barrier resulting

from a possible matrix distortion near the bubble sur-

face; n and 16 1 take into account a number of evapo-

ration sites in the surface layer and correlation e�ects

between di�usion jump directions, respectively.

The concentration Ceq;a�R; x; n� of the a-defects which

are in equilibrium with the curved surface of the gas

bubble can be de®ned from the equality of their chem-

ical potentials in the surface layer and matrix (see Refs.

[8,12] and Fig. 1):

Ceq;a�R; x; n� � exp

�
ÿWa ÿ �oFb=oxa� � �oFs=oxa�� �

T

�
;

�8�
where Wa is the free enthalpy of dissolution of a-objects

from a ¯at surface into the matrix; Fb�R; x; n� and

Fs�R; x; n� are Gibbs free energies of gas atoms in the

bubble and the bubble surface, respectively. In this pa-

per we neglect a bubble volume relaxation resulting from

an in¯uence of the gas pressure and curved bubble sur-

face to the elastic matrix.

The absorption probability Pa depends on a number

of the a-kind defects in a matrix layer neighboring to

that at the bubble surface and a frequency of their jumps

into the bubble:

Pa � 4pR2ln

xk2
a

Da exp�ÿea=T �ca�R; x; n� ; �9�

where ca�R; x; n� is the local atomic concentration of a-

defects in the matrix near the bubble surface. Note that

we neglect a small di�erence between locations of the

surface layer and its neighbor in the matrix.

3.2. Di�usion problem for an isolated bubble

A di�erence between the absorption and desorption

probabilities of a-defects at the bubble surface coincides

with the di�usion current of these types of defects into

the bubble and depends on the local concentration

ca�R; x; n� near the surface (see Eq. (9)).

In a dilute ensemble of bubbles the concentration

ca�R; x; n� can be obtained from the solution of the

steady-state di�usion problem for an isolated spherical

bubble [8] because the time scale of accommodation of

the a-object concentrations to the bubble is much

shorter than that for the evolution of the bubble itself.

r2ca � 0;

ca jr�R� ca1; �10�

�4pR2=x�Darca jr�R� Pa ÿ Qa;

where r is the radial distance from the bubble center and

ca1 is the concentration of a-defects far from the bubble.

Solving Eq. (10) we obtain the concentration of a-

defects at the bubble surface:

ca�R; x; n� � ca1 � Rln exp�ÿea=T �
k2

a � Rln exp�ÿea=T �
� Ceq;a�R; x; n�� ÿ ca1

�
:

�11�

1. In the di�usion controlled case, when

�k2
a=Rl� � n exp�ÿea=T �, we de®ne from Eq. (11)

ca�R� � Ceq;a�R�: �12�
In this case di�usion pro®les of a-defects exist in the

vicinity of the bubble.

2. For the reaction controlled case, when

�k2
a=Rl� � n exp�ÿea=T �, a concentration `step' is re-

alized near the bubble surface

ca�R� � ca1: �13�

3.3. Kinetic coe�cients

Using Eqs. (4), (5), (7), (9) and (11) and neglecting

the equilibrium concentration of interstitials at the

bubble surface �Ceq;i�R� � 0� we obtain the general

forms of the kinetic coe�cients describing the gas bub-

bles kinetics:

Ax � 4pR2ln
x

Dx exp�ÿex=T �
k2

x � Rln exp�ÿex=T � cx1
� ÿ Ceq;x�R; x; n��:

�14�

An � 4pR2ln
x

Dv exp�ÿev=T �
k2

v � Rln exp�ÿev=T � cv1
�(

ÿ Ceq;v�R�
�

ÿ Di exp�ÿei=T �
k2

i � Rln exp�ÿei=T � ci1

)
: �15�

Below we assume for simplicity ki � kv and ev � ei.

The dimension space �x; n� of the gas bubble can be

separated into growth and nucleation regions by the

ridge of the saddle-like potential surface of the `hydro-

dynamic' rate A~� �Ax;An�, when the components of this

rate Ax and An alternate their signs [3]. It is clear from

Eq. (15) that the coe�cient An alternates its sign in the

dimension space only when

Dici1
Dvcv1

< 1: �16�

In this paper we investigate only the case (16) when

the general three component nucleation problem is re-

duced to the two component one for the gas atom±va-

cancy clusters.

4. Critical size region

Being determined from the conditions Ax�xc; nc� � 0

and An�xc; nc� � 0, the critical bubble size �xc; nc� is a

saddle point of the system of `hydrodynamic' growth

rates of bubbles:
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dx=dt � Ax�x; n�;

dn=dt � An�x; n�: �17�
In the vicinity of the critical size the gas bubbles

penetrate into the growth region due only to the `di�u-

sion' coe�cients Bz in the Eqs. (2) and (3). Small values

of the parameters Az=Bzj j � 1 in this region result from

small supersaturation of gas atoms near the surface of

bubbles in the vicinity of the critical size (critical region)

(see Eq. (14)):

cx1 ÿ Ceq;x�R; x; n�
cx1

���� ����� 1 ; �18�

and small value of the parameter (see Eq. (15)):

Dici1
Dvcv1

���� ÿ cv1 ÿ Ceq;v�R; x; n�
cv1

����� 1: �19�

Introducing a function

Y �x; n� � ÿ xWx ÿ nWv ÿ xT lncx1

ÿ nT ln cv1 1

��
ÿ Dici1

Dvcv1

��
� Fb � Fs: �20�

Eqs. (14) and (15) can be transformed in the critical

region to the following form:

Ax � ÿ 4pR2ln

xk2
x

Dxcx1
k2

x exp�ÿex=T �
k2

x � Rln exp�ÿex=T �
oY �x; n�

T ox
;

�21�

An � ÿ 4pR2ln

xk2
v

Dvcv1 1

�
ÿ Dici1

Dvcv1

�
k2

v exp�ÿev=T �
k2

v � Rln exp�ÿev=T �

� oY �x; n�
T on

: �22�

In the same region the `di�usion' coe�cients Bz have

the following forms:

Bx � 4pR2ln

xk2
x

Dx exp�ÿex=T �cx1; �23�

Bn � 4pR2ln

xk2
v

Dv exp�ÿev=T �cv1

� 1

"
� Di exp�ÿei=T �ci1k2

v

Dv exp�ÿev=T �cv1k2
i

#
: �24�

In the reaction controlled case, when

�k2
a=Rl� � n exp�ÿea=T �, the kinetics coe�cients Ax;An

in the critical region are reduced to the following:

A�r�x � ÿ
4pR2ln

xk2
x

Dxcx1 exp�ÿex=T � oY �x; n�
T ox

; �25�

A�r�n � ÿ
4pR2ln

xk2
v

Dvcv1 1

�
ÿ Dici1

Dvcv1

�
exp�ÿev=T �

� oY �x; n�
Ton

: �26�

In the di�usion controlled case, when

�k2
a=Rl� � n exp�ÿea=T �, we obtain in the critical re-

gion:

A�d�x � ÿ
4pR
x

Dxcx1
oY �x; n�

Tox
; �27�

A�d�n � ÿ
4pR
x

Dvcv1 1

�
ÿ Dici1

Dvcv1

�
oY �x; n�

T on
: �28�

5. Critical parameters of the Y�x; n� surface

It will be shown below that the nucleation rate of the

gas bubble (number of the gas bubbles penetrating into

the growth region per second) depends crucially on the

position of the saddle point �xc; nc� in the size space and

the value and functional dependence of Y �x; n� in the

vicinity of this point.

To calculate these parameters we neglect below both

a relaxation of the bubble volume caused by the gas

pressure and a small value of the relaxation free energy

Frel � ÿ�3=8��V =l��p ÿ 2c=R�2 (where l is the shear

modulus) resulted from elastic relaxation of the matrix

[8,13].

High levels of the gas atom concentration in the

matrix result in high density of the gas atoms in the

bubble [13]. At such densities the ideal and van der Vaals

gas models [3,14] are hardly correct and we have to use

the `hard spheres' model which is valid both for low and

high gas/liquid densities. In this model the state equation

for the gas atoms has the following form [10]:

pV
xT
� 1� 2g� 3g2

�1ÿ g�2 ; �29�

here p is the gas pressure in the bubble; g � x0x=V is the

packing density, x0 � pd3
0=6 and d3

0 is the diameter of

the gas atom.

The free energy of the monatomic gas consists of two

parts [10]:

Fb�T ; V ; x� � F id
b �T ; V ; x� � F c

b �T ; V ; x� �30�
Here F id

b �T ; V ; x� is the free energy of the ideal gas:

F id
b �T ; V ; x� � ÿxT ln

ex0

g
mT

2p�h2

� �3=2
" #

; �31�

where m is the mass of the gas atom, �h is the Planck

constant, and F c
b �T ; V ; x� is the con®gurational free en-

ergy resulting from interactions between gas atoms:
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F c
b �T ; V ; x� � xT

Zg
0

pV
xT

�
ÿ 1

�
dg
g

� xT
6g

1ÿ g

�
� 2 ln�1ÿ g�

�
: �32�

Substituting Eqs. (31) and (32) into Eq. (30) we ob-

tain

Fb�T ; g; x� � xT
6g

1ÿ g

(
� ln g�1

h
ÿ g�2

i
ÿ ln ex0

mT

2p�h2

� �3=2
" #)

: �33�

Taking into account a spherical shape of the bubble

and using Eq. (1), the free energy of the bubble surface is

described by

Fs � 4p�3=4p�2=3c�xgx� xn�2=3

� 4p�3=4p�2=3c�xx0=g�2=3
; �34�

where c is the speci®c free energy of the bubble surface.

Substituting Eqs. (33) and (34) into Eq. (20) we ob-

tain the number of gas atoms in the critical bubble xc

and their packing density gc as a solution of the system

oY =ox � 0, oY =on � 0:

x1=3
c � 2�4p=3�1=3cxg1=3

c

x1=3
0 T ln cv1�1ÿ Dici1=Dvcv1�=C0

eq;v

h i
� pcx

n o ;
�35�

v�gc� � ln
cx1
C0

eq;x

 !(

ÿ xx

x
ln

cv1�1ÿ Dici1=Dvcv1�
C0

eq;v

" #)

� ln ex0

mT

2p�h2

� �3=2
" #

; �36�

where

v�gc� �
6gc

1ÿ gc

� ln gc�1
h

ÿ gc�2
i
� 1� 2gc � 3g2

c

�1ÿ gc�2
; �37�

C0
eq;b � exp�ÿWb=T � (b � x; v), gc is the packing density

in the critical bubble, pc � T �gc=x0��1� 2gc � 3g2
c�=�1ÿ

gc�2 is the gas pressure in the critical bubble.

It is clear from Fig. 2 and Eq. (36) that the large

vacancy and low gas atom concentrations �cx1 ! 0�
result in negative values of v�gc� which correspond to

small packing density in the critical bubble

�gc ! 0; pc ! 0�. For typical vacancy supersaturation

and gas atom concentrations [1] the high densities

(gc � 0:3±0:45) of the gas atoms are formed in the crit-

ical bubble (liquid state).

We also can obtain the value of the Yc � Y �xc; nc� in

the critical point:

Yc � 16p
3

c3x2

T ln cv1�1ÿ Dici1=Dvcv1�=C0
eq;v

h i
� pcx

n o2
:

�38�
In Figs. 3±6 we present the critical size xc and Yc for

the di�erent packing densities.

Fig. 2. The function v�gc�:

Fig. 3. Saddle form of the function Y �x; n�=T in the vicinity of

the critical size �T � 800 K; c � 1500 erg=cm
2; cv1=C0

eq;v �
cx1=C0

eq;x � 104; Dici1=Dvcv1 � 0:5�:
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6. Steady-state nucleation rate

For the kinetic coe�cients as well as the critical pa-

rameters (35)±(38) of the gas bubble ensemble the gen-

eral analytical expressions (14), (15) and (21)±(28)

involve only common restriction (16) to the e�ective

interstitial concentration. Below we shall describe the

case when an analytical solution of the nucleation

problem can be obtained that considerable restricts pa-

rameter values (e.g. the e�ective interstitial concentra-

tion) of the investigation system.

6.1. Potential conditions

Due to a fast development of the steady-state distri-

bution of the bubbles in the nucleation region [7,15], we

shall investigate below the steady-state nucleation

problem. The distribution function ~f �x; n� which results

in zero bubble current into the growth region usually

Fig. 5. The dependence of the critical size x1=3
c on the packing

density and vacancy supersaturation: (a) Dici1=Dvcv1 � 0:1; (b)

Dici1=Dvcv1 � 0:99 �T � 800 K; c � 1500 erg=cm
2; cv1=C0

eq;v

� cx1=C0
eq;x � 104�.

Fig. 4. Counter line plot of the surface Y �x; n�=T . Values of the

critical size �xc; nc� and Yc � Y �xc; nc�: (a) Dici1=Dvcv1 � 0:3; (b)

Dici1=Dvcv1 � 0:9�T � 800 K; c � 1500 erg=cm
2; cv1=C0

eq;v

� cx1=C0
eq;x � 104�:
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used to obtain the steady state solution of Eq. (2) [6,7].

In the one component system the analytical solution of

the steady-state nucleation problem can be easily ob-

tained because this function coincides with that

( ~f � f0�x�) resulting in the detailed balance of the nuclei

along the size axis and causing zero nuclei current in any

point of this axis [16].

In a two component system the distribution function

f0�x; n� of the detailed balance has to be obtained from

the following two equations:

Azf0 ÿ o�Bzf0�=oz � 0; z � x; n: �39�
This system has a solution only when the `potential

conditions' are valid [6,7]:

o
ox

An ÿ oBn=on
Bn

� �
� o

on
Ax ÿ oBx=ox

Bx

� �
: �40�

In the reaction controlled case, when

�k2
a=Rl� � n exp�ÿea=T �, using Eqs. (23)±(26) we ob-

tain:

o
ox

oBn=on
Bn

� �
� o

on
oBx=ox

Bx

� �
� o2Y �x; n�

oxon
; �41�

o
ox

A�r�n

Bn

� �
� 1ÿ Dici1=Dvcv1

1� Dici1=Dvcv1
� o

on
A�r�x

Bx

� �
: �42�

Comparing Eqs. (41), (42) and (40) one can see that

the potential conditions are valid in the reaction con-

trolled case only for more strong restriction than

Eq. (16), namely small e�ective interstitial supersatura-

tions

Dici1=Dvcv1 � 1:

A solution of the steady-state nucleation problem in this

case can be obtained by using the distribution function

f �r�0 �x; n� of the detailed balance (Jz�f �r�0 � � 0):

f �r�0 �x; n� / exp � ÿ Y �x; n�=T �: �43�
But taking into account Eq. (20) one can see that even in

this case the function Y �x; n� coincides with the ther-

modynamical minimum work of the gas bubble creation

only when the interstitial supersaturations vanishes

�ci1 � 0� (see also Refs. [2,3]).

Potential conditions (40) are not valid when the ef-

fective concentrations of the interstitials are high as well

as in the di�usion controlled case, when

�k2
a=Rl� � n exp�ÿea=T �. In these cases it is not possible

to de®ne the distribution function f �d�0 �x; n� which

maintains the detailed balance. To obtain the distribu-

tion function resulting in zero total current of the bubble

into the growth region in the di�usion controlled case

one has to solve steady-state Eq. (2) with the general

form (14) and (15) of the kinetic coe�cients and boun-

dary conditions corresponding to zero total current of

bubbles into the growth region. This more general

problem will be investigated elsewhere.

6.2. Steady-state nucleation rate

In the present paper we investigate the problem of the

gas bubble nucleation for the simplest case i.e. the re-

action controlled one with small e�ective interstitial

supersaturations

�k2
a=Rl� � n exp�ÿea=T �;

Dici1=Dvcv1 � 1 �44�
In this case we can build the function f �r�0 �x; n� �

�N=R2� exp ÿY �x; n�=T� � (where N is a normalization

constant) which maintains the detailed balance and re-

duce the equations for the bubble currents in the di-

mension space to the following:

Jz=Bzf
�r�
0 � ÿo�f =f �r�0 �=oz; z � x; n: �45�

For a sharp saddle shape of the potential surface of

the gas bubbles growth rate A~� �Ax;An� a fraction of the

bubbles penetrating into the growth region far from the

critical size region is negligible.

Moreover, we assume below that the nuclei pene-

trate into the growth region of the dimension space

along the `ravine' of the surface Y �x; n� [17]. Replacing

in the vicinity of the saddle point �xc; nc� the variables

�x; n� by �n � y; x � jy�, where j is the angle coe�cient

of projection of the `ravine' of the surface Y �x; n� on to

the �x; n�-plane, we reduce Eq. (45) to the single equa-

tion

Fig. 6. The dependence of Yc on the packing density and va-

cancy supersaturation �T � 800 K; c � 1500 erg=cm
2; cv1=

C0
eq;v � cx1=C0

eq;x � 104; Dici1=Dvcv1 � 0:3�.
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o�f =f �r�0 �
oy

� ÿBnj2 � Bx

BnBx

J �r�n

f �r�0

: �46�

Solving Eq. (46) with boundary conditions

�f =f �r�0 � ! 0 aty !1 and �f =f �r�0 � ! 1 at y ! 0 we

obtain the total steady state bubble current into the

growth region (the nucleation rate) J in the following

form:

J �r� �
����������������������������������

J �r�n

� �2

� J �r�x

� �2
r

� N

������������������������
r
pT
�1� j2�

r
� bn

1� j2�bn=bx�
� exp�ÿYc=T �:

�47�

Here r � d2Y =2dy2
�� ��; bx � �Dxcx1l=k2

x� exp�ÿex=T �,
bv � �Dvcv1l=k2

v� 1ÿ Dici1=Dvcv1� � exp�ÿev=T � and

gc ! 0) j! 0, gc ! 0:47) j! xgc= x0�1ÿ�
xxgc=x0��:

We can see that the value Yc � Y �xc; nc� can be

treated in this case as a nucleation barrier governing the

nucleation kinetics of the gas bubbles.

6.3. Temperature dependence of the nucleation rate

Neglecting the preexponential term in Eq. (47) the

temperature dependence of the nucleation rate is de®ned

by

J / exp � ÿ �Uam � Yc�=T �; �bn=bx� � 1 �48�

It can be easily obtained from Eqs. (38) and (48) that

the temperature dependence of the nucleation rate of the

voids �p � 0; ci1 � 0� has a maximum at the tempera-

ture [18]

T � � T0�1� s�; �49�

here T0 is the temperature of the minimum of function

Yc�p � 0�� �=T describing the nucleation of vacancy

voids:

T0 ' Wv=3 ln cv1 1

������ ÿ Dici1
Dvcv1

������ �50�

and

s � 2

"
� 18pc3x2

UamW2
v

#ÿ1

: �51�

Gas atoms dissolved in the matrix result in an addi-

tional, temperature dependent term pcx in the nucle-

ation barrier Yc�T �. That results in both the sharp

increase of the gas bubble nucleation rate and the

change of its temperature dependence in comparison to

those for the vacancy voids. Using Eqs. (35)±(38) we

obtain the temperature T x
0 of the minimum of Yc=T for

gas bubbles:

T x
0 � T0 1

�
ÿ 2

x
x0

gc�T x
0 �

Wx ÿ �xx=x�Wv

Wv

�
� 1

�
ÿ 2

x
x0

gc�T x
0 �
���� lnÿ1 cv1 1

��
ÿ Dici1

Dvcv1

��

� 1ÿ 2g2
c�T x

0 �
�1ÿ 2gc�T x

0 ��2
�����

#ÿ1

: �52�

Taking into account that usually Wx � Wv (e.g. for he-

lium atoms) and, in any case, gc�T x
0 � > 0; we conclude

that an increase of the packing density of the gas atoms

in the bubble shifts the temperature maximum of the

nucleation rate to low temperatures at the value:

DT � 2T0

x
x0

gc

Wx ÿ �xx=x�Wv

Wv

�
ÿ 1ÿ 2g2

c

1ÿ g2
c

� lnÿ1 cv1 1

������ ÿ Dici1
Dvcv1

������� �53�

It was obtained in Ref. [1] that at the initial stage a

position of the temperature of the maximum of radia-

tion swelling moves down to the low temperatures when

the helium concentration increases in the matrix (Fig.

8a of Ref. [1]). Assuming that at this stage the swelling

increase results from the void density increase (see

Fig. 3 of Ref. [1]) one achieves a qualitative agreement

with our results concerning the shift of the maximum of

the temperature dependence of the nucleation rate to

low temperatures when the helium concentration in-

creases.

7. Conclusions

1. Using no detailed balance assumptions, the general

form of the kinetic coe�cients of the Fokker±Planck

equation describing gas bubble nucleation in three

component supersaturated solution of vacancies, in-

terstitials and gas atoms are obtained.

2. Based on the analysis of these coe�cients we investi-

gate conditions of both: (a) the reduction of the 3-

component nucleation problem to the 2-component

one for the gas bubble nucleation

�Dici1=Dvcv1 < 1�, and (b) the applicability of the

distribution function, which maintains the detailed

balance of the bubbles in the dimension space, to

the calculation the nucleation rate of the bubbles (re-

action controlled case �k2
a=Rl� � n exp�ÿea=T � and

small interstitial concentration Dici1=Dvcv1 � 1�.
3. The `hard sphere' model is used to describe the gas

state in the bubbles. It is shown that the high packing

density �gc � 0:3±0:4� of the gas atoms can be formed
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in the nucleating bubbles. High gas density in the crit-

ical bubble decreases the barrier for the gas bubble

nucleation in comparison to that for the vacancy

voids.

4. An increase of the gas density in the critical bubble

results in a shift of the position of the temperature

maximum of the gas bubble nucleation rate to the

lower temperatures.
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